博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Convolution of measures and one application
阅读量:6858 次
发布时间:2019-06-26

本文共 911 字,大约阅读时间需要 3 分钟。

If $\mu,\nu$ are two finite Borel measures on $R^d,$ the their convolution is the push-down of $\mu\times \nu$ under the addition map $(x,y)\to x+y,$ that is 

$$(\mu\ast \nu)(A)=\int\int I_A(x+y)d\mu(x)d\nu(y)$$ for any Borel set $A.$

Note that the addition map is continuous and hence measurable,  $(\mu\ast \nu)(\cdot)$ is a measure on $R^d \times R^d.$ 

Remark: The self-convolution $\mu\ast \mu$ of a singular measure on $R$ can be absolutely continuous, and the density can be H\"{o}lder continuous. 

The following is a nice application.

 Let $A\subset R^d$ be a Salme set. Then for any Borel set $B\subset R^d,$

$$\dim_H(A+B)=\min\{\dim_H A+\dim_H B, d\}$$.

Moreover, if $\dim_H A+\dim_H B>d$, then $A+B$ has positive Lebesgue measure.

For the proof of the above result, see "A class of random Cantor measures, with applications" by P. Shmerkin and V. Suomala. 

转载于:https://www.cnblogs.com/jinjun/p/7340259.html

你可能感兴趣的文章
SAP MM Transportation of PR Release Strategy with Classification
查看>>
RSD和wlwmanifest是什么
查看>>
git 常用命令及问题解决(转)
查看>>
痛点无法解决 早餐始终上不了互联网台面
查看>>
UserMapper.selectByPrimaryKey-Inline 报错的解决办法
查看>>
【Win10应用开发】自适应磁贴中的分组
查看>>
[20170703]11g增加字段与查询条件的变化
查看>>
mysql配置参数优化
查看>>
微信开放平台 公众号第三方平台开发 教程二 创建公众号第三方平台
查看>>
Swing中弹出对话框的几种方式(转)
查看>>
人工智能时代的工作、学习和生活---《人工智能》阅读笔记
查看>>
linux下使用 du查看某个文件或目录占用磁盘空间的大小
查看>>
将 Intent 序列化,像 Uri 一样传递 Intent!
查看>>
UWP开发入门(十五)——在FlipView中通过手势操作图片
查看>>
Python——set
查看>>
PhxPaxos源码分析——网络
查看>>
SharePoint Error - The SharePoint server was moved to a different location.
查看>>
十款绝bi好用的硬盘数据恢复软件值得拥有简易恢复
查看>>
写给设计师的字偶距调整指南
查看>>
三大优势加身,SDN成广域网优化重要手段
查看>>